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Temperature dependence of the surface free energy and surface stress:
An atomistic calculation for Cu(110)
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We propose a method to deduce the free energies y and stresses 7 of plane surfaces and solid-liquid
interfaces in elemental systems from atomistic simulations involving nonhydrostatically stressed solid phases.
The method is applied to compute the temperature dependencies of y and 7 for the (110) Cu surface using
Monte Carlo simulations with an embedded-atom potential. Both quantities decrease with temperature but
remain different even near the bulk melting point despite extensive premelting of this surface. This difference
is explained by the existence in the premelted surface structure of a solid-liquid interface with relatively small
but finite values of y and 7. Separate calculations of the (110) solid-liquid interface stress give a negative value,
suggesting that this interface is in a state of compression. This study motivates future work on anisotropy of
surface/interface free energies and stresses, and on the extension of this method to more complex systems.
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I. INTRODUCTION

The surface free energy vy and the surface stress 7;; are
fundamental quantities in surface thermodynamics. Gibbs!
defined the surface free energy as reversible work per unit
area needed to create a new surface and the surface stress as
reversible work of elastically stretching the surface. These

two quantities are related by?

d
T:. = 5'y+ (9—7’ i’j=1’2, (1)
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where the derivative is taken at a constant temperature, e;; is
a strain tensor of the surface, and &; is the Kronecker sym-
bol. Two of the Cartesian axes are assumed to be parallel to
the surface and the third one is normal to it. While vy is a
scalar, the surface stress 7 is a symmetrical second-rank ten-
sor. These quantities are usually of the same order of mag-
nitude. Due to the second term in Eq. (1), components of 7
can be larger than vy, smaller, or even negative, which vy can
never be.! Defining the average surface stress as 7=(7y,
+7,)/2, Eq. (1) can be rewritten as

(2)

dy
T=Y+A—,
Y 0.

A

where A is the surface area.

The fundamental differences between vy and 7 have been
recently discussed by Kramer and Weissmuller.® In contrast
to solids, y and 7 of liquids are numerically equal because
liquids respond to strains by exposing more or less atoms to
the surface without changing 1, resulting in dy/de;;=0.% At
high temperatures, vy of a solid can exceed the sum of the
liquid-vacuum and solid-liquid free energies. To minimize
the free energy, the solid surface can premelt, creating a thin
liquidlike layer.® Gurney’ argued that because at high tem-
peratures surface atoms can migrate like in a liquid, the sur-
face free energy should become equal to the surface stress.
This assumption was later used in the experimental work of
Bailey and Watkins.® Herring® disagreed with Gurney’s con-
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clusion, questioning the way Gurney related the chemical
potentials of the surface atoms to the surface stress.

Unfortunately, most of the data for surface stresses re-
ported in the literature refer to either 0 K or to a certain fixed
temperature, making it difficult to determine whether 7and y
converge with temperature. The temperature dependence of
v was studied experimentally!® and by atomistic
simulations,'"!'> and it was found that y decreases with tem-
perature. The experiments of Vermaak and Wilsdorf!® indi-
cated that the second term in Eq. (1) linearly increased with
temperature.

Equation (1) can also be applied to solid-liquid interfaces
provided that the derivative is taken along a constant-
temperature direction on the solid-liquid coexistence surface
in the parameter space. It can be expected that 7 and y would
be again different, but this has not been tested experimen-
tally. Recent atomistic simulations indicate that 7 of solid-
liquid interfaces can be positive or negative depending on the
material.!3

The goal of this work is to clarify the behavior of the
surface stress and surface free energy with temperature, par-
ticularly near the bulk melting point. We employ atomistic
computer simulations using a (110) copper surface as a
model. For the interpretation of the surface premelting be-
havior, we have also studied isolated solid-liquid and liquid-
vacuum interfaces. Our calculations of the surface and inter-
face properties are based on thermodynamics relations that
we derive here in a mathematical form suitable for atomistic
calculations.

Such derivations are needed for the following reasons.
Taking surface stress as an example, Eq. (1) can be rewritten
as

d(yA)

T = , 1,j=1,2, 3
1= A de, J (3)
where yA is the total excess free energy of a surface whose
area A can vary only by elastic straining without changing
the number of surface atoms. This equation can be simplified
by using Lagrangian coordinates, i.e., coordinates attached to
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the crystal lattice."*!# In the Lagrangian formulation, a cer-
tain state of the solid is chosen as a reference and all other
states are considered as derived from it by appropriate elastic
deformations. The strain tensor, eiLj, is then taken with respect
to the reference state, the surface free energy " is taken per
unit reference area, and the surface and bulk stresses (TiLj and
o’iLj) are defined as forces per unit reference length/area. Us-
ing the Lagrangian quantities, some thermodynamic equa-
tions can be rewritten in a more compact form than in terms
of real physical quantities. For example, the Lagrangian sur-
face stress becomes simply 71-Lj=(9y’“/(9efj instead of Eq.
(3)_4,14

Despite certain advantages, using Lagrangian quantities is
not convenient for atomistic calculations. Such calculations
give immediate access to instantaneous physical quantities,
such as the system dimensions, energy, and stress. Because
the cross-sectional area of the simulation block usually con-
tains a fixed number of unit cells of the solid, all properties
of the surface or interface automatically correspond to the
same Lagrangian state. Thus, there is no need to specify a
particular reference state and introduce the respective
Lagrangian quantities. As will be shown in this paper, it is
easier to formulate computational recipes and perform the
calculations in terms of directly accessible physical param-
eters.

In Sec. II and Appendix we show how surface excess
quantities, particularly 7 and 7, can be extracted from raw
simulation data. After introducing our methodology (Sec.
III), we perform atomistic simulations of thermodynamics of
the (110) Cu surface at temperatures from 0 K to the bulk
melting point (Sec. IV). In Sec. IV we compute the stresses
of the solid-liquid and liquid-vacuum interfaces. In Sec. V
we analyze our results and draw conclusions.

II. THERMODYNAMIC RELATIONS

In this section we derive the relations of surface thermo-
dynamics that will be used in this work. Although we are
interested in the surface/interface free energy 7y, it is conve-
nient to formulate all equations in terms of the fotal excess
free energy of the simulation block, yA, and defer a separa-
tion of 7y until the end of the calculation. In all thermody-
namic processes considered here, A changes by elastic defor-

mation only, so that the Lagrangian area of the surface/
interface remains constant. Although in the atomistic
simulations presented later in this paper the solid is almost
stress free, it still contains some residual stresses which are
not hydrostatic. To enable corrections for such residual
stresses, all equations will be derived for the general case of
a nonhydrostatically stressed solid. The cases of a solid sur-
face and a solid-liquid interface will be discussed separately.

A. Solid surface

Consider an elemental solid in a nonhydrostatic state of
strain whose plane surface is exposed to vacuum. It can be
shown (see the Appendix) that reversible variations in the
total excess free energy are given by

d(yA) = - [S/X1dT - [NIX1df + 2 [oy;VIX)de;;, (4)
ij=12

where the state variables are temperature 7, the Helmholtz
free energy per atom of the bulk solid f*, and the elastic
strain tensor é. Conjugate to these variables are the surface
excesses of the entropy S, of the number of atoms N, and of
the volume-averaged lateral components of the stress tensor
¢ multiplied by the total volume V. As A, these excess
quantities refer to the entire simulation block not per unit
surface area. To satisfy mechanical equilibrium, one of the
principal axes of & must be normal to the surface with o33
=0. Following the method of Cahn,* we have expressed the
surface excesses through the determinants in which, for ex-
ample,

[s] [X]
SX XS

. =

[S/X] = [S]- S [x)/xe,

with similar expressions for the excesses of N and o;;V. Here
X is one of the extensive quantities S, N, or oV, which can
be chosen arbitrarily. The square brackets, such as [S] or [X],
indicate the amount of the extensive quantity in a thick
enough layer containing the surface [Fig. 1(a)]. One of the
bounds of the layer is placed in vacuum and the other in the
bulk of the solid, both far enough from the surface to neglect
its effect. The superscript s refers to properties of a homoge-
neous solid region chosen as a comparison system. Since
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[X/X]=0, one of the terms in Eq. (4) is necessarily zero,
reflecting the constraint imposed by the bulk equation of
state. It can be shown that the remaining terms express d(yA)
as a perfect differential and that the surface excesses do not
depend on the thickness of the surface layer as long as its
bounds are beyond the influence of the surface.*

Choosing X=N, Eq. (4) becomes

d(yA)==[SINJAT+ 2, [0,VIN]de;
i,j=1,2

=-S%dT+ 2, 7Ade

ij=12

ij» (5)

where 7;; is the surface-stress tensor given by

A._l(M)
- T

v A (9e‘l-j
_ [(T”V/N]
A
Ky ijv] [V]
_Lay w | _leVl-aviy o
AN’ A
[we used Eq. (3)], and S** is the excess entropy,
§% = [S/N] =[S] - S[NVN°. (7)

Furthermore, with this choice of X, yA itself becomes the
excess of the Helmholtz free energy: yA=[F/N] (see the
Appendix). Therefore,

YA =[U - TSIN] = U* - TS, (8)
where
U™ =[U/N]=[U]- U’[N]/N* 9)

is the total excess of internal energy. Combining Egs. (5) and
(8), we obtain

(yA)) U 1
dl ~— | == —=dT+— - Ade,;. 10
( T T2 quj=21,2 le elj ( )

This equation can be used for computations of yA by
thermodynamic integration. For example, consider a process
in which temperature is increased while the solid is stretched
biaxially to maintain zero bulk stress, o‘fj=0 (i,j=1,2,3), at
every temperature. In this process, the biaxial strain e in-
creases with temperature to accommodate the thermal expan-
sion of the solid. As a result, 7 and e are no longer indepen-
dent variables and Eq. (10) becomes

vA U** 27A( de
d\ —|=-—FdT+ — dT. (11)
=0

T 7 T \oT

The second term in the right-hand side includes the linear
thermal-expansion factor,
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1( da de
a=-=]  ==] (12)
a\dT o =0 aT o =0
i i

where a is the bulk lattice parameter of the solid at tempera-
ture 7. Note that « is a function of temperature only, same as
U®*, A, and 7. Knowing (yA), at some reference temperature
Ty, Eq. (11) can be integrated to obtain yA at another tem-
perature 7,

A(T) = (vA) T TfT U™ 2atA
= — + - — 4+
’y ’y OT() TO T!2 T!

}dT’. (13)

In atomistic simulations, U®*, 7, and « can be computed
for a set of temperatures and used to obtain yA(T) by nu-
merical integration of Eq. (13). The physical value of vy is
then recovered by dividing yA by the physical area of the
surface at the respective temperature. This procedure was
implemented in this work as will be discussed later.

B. Solid-liquid interface

Consider the same nonhydrostatically stressed solid but
now in contact and equilibrium with its melt at a pressure p.
The mechanical equilibrium condition between the two
phases requires that one of the principal axes of the stress
tensor in the solid be normal to the interface with o33=—p.
The differential of total excess free energy of the solid-liquid
interface is given by (see the Appendix)

d(yA) == [SIXY1dT + [VIXY]dp - [NIXY]du

+ 2 [(o;+ 8,;p)VIXY]de
ij=1,2

(14)

ij>

where w is the chemical potential in the liquid. Any two of
the intensive variables S, V, N, or (g;;+ &;p)V (denoted by X
and Y) can be eliminated because each phase imposes a con-
straint expressed by a Gibbs-Duhem equation.* The determi-
nant [Z/XY] is defined by

(7] [x] [Y]
zZ X v
7z x Yy

(15)

As before, the square brackets designate the extensive prop-
erty Z of a thick enough layer containing the interface [Fig.
1(b)], whereas the superscripts s and [ refer to arbitrarily
chosen regions of the homogeneous solid and liquid phases.
It can be shown that this determinant gives the total excess of
the extensive property Z over the bulk phases under con-
served values of the extensive properties X and Y.*
Choosing N and V for X and Y, Eq. (14) reduces to

d(yA) =—S¥dT+ X, 7,;Ade (16)

ij=1,2

ijs

with the interface stress tensor given by
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[(Uij + 5i_jp)v] [N] [V]

(g +op)V' N V*

oy + 8,p)VINV] 0 NV
Tij= A - NV
NV

(17)

The excess entropy S*=[S/NV] is given by a similar expres-
sion.

Equations (6) and (17) express the surface and interface
stresses 7; as excesses of the stress tensor ¢ in forms con-
venient for computations. They involve only extensive prop-
erties and do not require calculations of interface profiles.
For the particular case of a hydrostatic solid or a liquid sys-
tem, these equations reduce to

7;=[o;VI/A  (plane solid or liquid surface), (18)

7;=[(0;;+ 6;p)VI/A  (plane solid-liquid interface).

(19)

Equations (6) and (17) will be used in the atomistic simula-
tions discussed in the rest of the paper.

III. METHODOLOGY OF ATOMISTIC SIMULATIONS
A. Simulated models

We chose copper as a model material with atomic inter-
actions described with an embedded-atom method (EAM)
potential fit to experimental and first-principles data.'> This
potential accurately reproduces the lattice parameter, cohe-
sive energy, elastic constants, phonon frequencies, thermal
expansion, lattice-defect energies, and other properties of Cu.
The melting temperature of Cu predicted by this potential is
T,=1327 K (1356 K in experiment).

The (110) surface was modeled in a 26X25X41 A3
(2240 atoms) simulation block with periodic boundaries in
the x and y directions and free surfaces in the z direction, a
geometry which mimics an infinitely large thin film [Fig.

2(a)]. The coordinate axes were aligned parallel to [110],
[001], and [110], respectively. To study a liquid surface, the
film was completely melted by increasing the temperature
above T, and cooled down to temperatures of interest around
T,

The (110) solid-liquid interface was modeled in a 26
X25% 110 A3 (5600 atoms) block containing a
~40-A-thick solid layer sandwiched between two ~35 A
thick liquid layers exposed to vacuum [Fig. 2(b)]. The solid
part had the same crystallographic orientation as the previ-
ously described solid film with periodic boundary conditions
in x and y. The exposure to vacuum guaranteed zero pressure
in the liquid.

Prior to the MC simulations, each block was uniformly
expanded by the linear thermal-expansion factor at the simu-
lated temperature using the expansion factors computed
previously.'> Although this pre-expansion eliminated most of
the thermal stresses in the solid, there were always some
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FIG. 2. Typical Monte Carlo (MC) snapshot of (a) (110) solid
film at 1320 K and (b) (110) solid-liquid coexistence system at 1327
K. The open circles mark instantaneous atomic positions projected
on the (110) plane parallel to the page. The top and bottom surfaces
of both systems are exposed to vacuum. The distances #, d, and d’
are discussed in text.

nonhydrostatic residual stresses due to statistical errors in the
thermal-expansion factors.

B. Monte Carlo simulations

Off-lattice MC simulations'®!” were employed to study
the surface and interface properties at finite temperatures.
Although the same calculations could have been imple-
mented with molecular dynamics, we wanted to use the same
method as in our ongoing work on binary Cu-based alloys. In
alloys, the formation of an equilibrium surface/interface seg-
regation requires a redistribution of the chemical species
over the system by diffusion mechanisms, which makes
molecular-dynamics simulations highly impractical.

In the MC simulations, the system volume and tempera-
ture are fixed while the atoms are movable. At each MC step,
a randomly chosen atom is displaced by a random amount in
a random direction and this move is accepted or rejected by
the Metropolis algorithm. At each temperature, the initial
configuration was brought to equilibrium by 10*~10° MC
steps per atom (depending on the system size), followed by a
production run of (2—6) X 10° additional MC steps. Snapshot
files containing instantaneous atomic positions were saved
every 20-30 MC steps and used in subsequent calculations
of stresses, energies, and other properties.

The solid surface calculations were performed at tempera-
tures from 0 to 1320 K, the liquid surface calculations at
1300, 1327, and 1350 K, and the solid-liquid interface cal-
culation at 1327 K only. In the latter case, despite spontane-
ous random displacements of the interfaces during the simu-
lations, the solid layer thickness remained at least 35 A and
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the thickness of each liquid layers at least 25 A. These thick-
nesses were considered large enough to neglect interactions
between the interfaces.

C. Structural order analysis

To analyze the structural changes in the surface region
and to identify the interface positions, we employed the
structure factor S(k), whose modulus is given by

15(k)| = llv \/ {E cos(kri)]z + {2 sin(kr,-)]z, (20)

where k=2m{212/a,0,0] is a chosen reciprocal-lattice vec-
tor parallel to the x direction, r; is the radius vector of atom
i, and the summation goes over the N atoms contained in a
region of interest. |S(k)| is equal to 1 for perfectly ordered
fce structure at 0 K and O for a disordered structure such as
liquid. The structure factor was computed for a set of layers
parallel to the surface/interface and plotted as a function of
distance z normal to the layers.

For the solid surface, positions of (220) atomic planes in
the bulk were identified and extrapolated toward the surface,
keeping the total number of real and extrapolated planes con-
stant at all temperatures. Each atom was assigned to the near-
est plane and |S(k)| was computed by summation over the
atoms assigned to each plane. At low temperatures, the [S(Kk)|
values thus obtained refer to actual atomic planes. When the
surface becomes disordered at high temperatures, the [S(k)|
values in the surface region are formally assigned to imagi-
nary planes, whereas the values in the bulk still refer to the
actual atomic planes. The average structure factor, S(k)|mp,
of the top two surface layers was used as a metric of surface
disorder. The thickness /4 of the surface region was estimated
as the distance between the top surface plane and the point at
which |S(k)|(z) =[|S(k)|,op+[S(K)[;]/2, where [S(K)] is the
value of the structure factor in the bulk solid.

For the block containing two solid-liquid interfaces, [S(k)|
was computed for atoms located within 6-A-thick windows
parallel to the interfaces. The profile |S (k)|(z) was calculated
by moving the center of the window by small increments in
the z direction. The interface positions were estimated from
the relation |S(k)|(z) =|S(k)|,/2. The liquid surface positions
were identified with the maximum and minimum values of
the z coordinates of all atoms.

The interface positions defined through the structure fac-
tor slightly depend on the choice of the k vector. There is
also some arbitrariness in the positions of the liquid surfaces.
We emphasize, however, that we do not assign to these defi-
nitions of the surface/interface positions any thermodynamic
meaning. We use them only as a guide for selecting reason-
able bounds of the homogeneous bulk regions as discussed
below.

D. Surface and interface stress calculations

EAM permits direct calculations of the average stress ten-
sor g;; of a system using the virial expression'd
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1 LT
o;V= > {|:Eq),(raﬁ)+\P,(ﬁa)p,(raﬁ):|r_aw}

e -
a#p

— NkgT$; |, (21)

where the symbols a and 8 enumerate atoms, i and j are
Cartesian components of the vectors and tensors, r’;ﬁ is the
vector connecting atoms « and S separated by a distance r,,
®(r,p) is the pair interaction function, p(r,g) is the electron-
density function assigned to atoms, W(p,) is the embedding
energy of atom «, p, is the host electron density on atom «,
V is the volume of the system, kj is the Boltzmann constant,
and the prime indicates differentiation of the functions.

The surface and interface stresses were computed from
Eqgs. (6), (18), and (17) for each individual snapshot, and the
results were averaged over all snapshots. Note that those
equations contain only products of the stresses times the re-
spective volumes, which are given directly by the right-hand
side of Eq. (21). Thus, the calculation does not require par-
titioning of the volume between atoms. For the solid and
liquid surfaces, the quantities [o7;V] and [N] were computed
for the entire simulation block. For the solid surface, the bulk
values of o},V* and N* were calculated for an inner region of
the film, whose bounds were a distance d away from the
upper and lower surfaces.

For the solid-liquid interface, [o;;V], [V], and [N] were
determined for a layer whose bounds were a distance d away
from the upper and lower liquid surfaces and which con-
tained two solid-liquid interfaces. A region inside the solid
layer that was separated by a distance d’ from each of the
solid-liquid interfaces was selected to compute o‘f,-VS, V¥, and
N¢. Similarly, V! and N were computed for bulk liquid re-
gions chosen a distance d' always from the solid-liquid in-
terfaces and a distance d away from the liquid surfaces.

The distances d and d" were chosen to be large enough to
exclude the influence of the surfaces and interfaces on bulk
quantities, which was verified by increasing these distances
until the computed surface/interface stresses reached con-
stant values within statistical errors of the calculations. Typi-
cal values of d and d’ were around 9 A. Note that these
distances were taken relative to the instantaneous positions
of the interfaces in each snapshot. Since the interfaces con-
stantly deviated slightly away from their average positions
due to thermal fluctuations, the bulk regions selected for the
stress calculations varied from one snapshot to another,
implementing additional statistical averaging of the bulk
properties.

In addition to averaging over the snapshots, the final val-
ues of the surface/interface stresses were obtained by aver-
aging over several different choices of d and d'. The error
bars of the calculations were estimated by dividing the entire
set of 3 X 10* snapshots into ten subsets and computing the
standard deviation of the subset averages from the global
average. Clearly, this error bar depends on the number of
subsets.
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FIG. 3. Typical MC snapshot of the solid film at three tempera-
tures. The open circles mark instantaneous atomic positions pro-
jected on the (110) plane parallel to the page. Note the perfectly
ordered surface structure at low temperatures and premelting at
high temperatures.

E. Thermodynamic integration

The free energy vy of the solid surface was computed as a
function of temperature by thermodynamic integration based
on Eq. (13). U™ was determined from the MC simulations at
several temperatures using Eq. (9). The values of [U] and
[N] were computed for the entire simulation block and U*
and NV° for the bulk solid region selected as discussed above.
The integrand of Eq. (13) computed at several temperatures
was approximated by a fourth-order polynomial and inte-
grated analytically. Increasing the power of the polynomial
did not affect the results significantly.

The reference temperature was chosen to be 7,=300 K.
The reference value 7, was obtained in the classical quasi-
harmonic approximation to atomic vibrations.!! It was
checked that other choices of T, within *50 K produced
only minor changes in the results.

IV. RESULTS

Examination of the MC snapshots shows that the atomi-
cally ordered solid surface becomes increasingly disordered
at high temperatures, developing a relatively thick liquidlike
layer near T,, (Fig. 3). This trend is quantified in Fig. 4,
showing that the surface thickness £ is on the order of the

8.0
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Surface layer thickness (A)

- o
o o

N
o

I
o

200 400 600 800 1000 1200
Temperature (K)

FIG. 4. Thickness of the (110) surface layer as a function of
temperature. The vertical dashed line indicates the bulk melting
point.
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FIG. 5. Average stress 7 and the surface structure factor |S(k)|top

of the (110) surface as a function of temperature. The vertical
dashed line indicates the bulk melting point.

interatomic distance at low temperatures but rapidly in-
creases with temperature at 7> 1100 K. The thickness ap-
pears to diverge to infinity near 7,,, but this remains to be
verified by future detailed calculations in a very close vicin-
ity of T,,. The surface structure factor |S(K)|,,, decreases with
temperature approximately linearly until about 800 K (Fig.
5), which can be attributed to increased amplitudes of atomic
vibrations in the otherwise atomically perfect surface struc-
ture. At temperatures around 800 K, the atoms of the top
surface layer begin to abandon their regular positions and
jump on top of the layer, forming adatoms and leaving sur-
face vacancies behind. The amount of this structural disorder
rapidly increases with temperature. Accordingly, S(k)|t0p de-
creases more rapidly than below 800 K, producing a break-
ing point on the curve. As expected, S(k)|top is small near
T,,, reflecting the formation of a liquidlike layer on the sur-
face.

Because the coordinate axes are chosen to be parallel to
crystallographic directions with twofold symmetry, the
surface-stress tensor is diagonal. Its components calculated at
0 K using Eq. (6) with 0};=0 are 7;=1.19 J/m* and 7,
=1.33 J/m?, showing moderate anisotropy. Both compo-
nents are positive and smaller than the 0 K surface energy,
y=1.472 J/m?. The average surface stress decreases with
temperature from 7=1.26 J/m? at 0 K to 0.83 J/m? at 1320
K (Fig. 5). This decrease is almost linear between 0 and
about 800 K but accelerates and becomes noticeably nonlin-
ear above 800 K. This behavior is remarkably similar to the
temperature dependence of the surface structure factor, dem-
onstrating that 7 is a sensitive parameter to the surface dis-
ordering at high temperatures.

To verify that this similarity is not a numerical artifact
arising from the size effect or the simulation method, addi-
tional MC calculations of 7 were conducted for two different
block sizes. Furthermore, additional calculations were per-
formed for yet another block size using molecular dynamics
instead of MC. The results are summarized in Fig. 6, show-
ing that all the points lie on a common curve whose shape is
very similar to Fig. 5.

The anisotropy of the surface stress, 7,,—7;, increases
with temperature as long as the surface remains perfectly
ordered (Fig. 7), reaches a maximum around 800 K where
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FIG. 6. Temperature dependence of the average surface stress
computed by MC simulations of systems with 1024, 2240, and 9856
atoms and by molecular-dynamics simulations of a 896 atom sys-

tem. Note that the shape of the curve does not depend on the model
size or the simulation method.

the surface disordering starts, and then drops and reaches a
slightly negative value near the melting point. This behavior
confirms the sensitivity of the surface stress to the structural
order at the surface, which is consistent with Figs. 5 and 6.

The surface free energy decreases with temperature from
y=1.472 J/m? at 0 K to 1.130 J/m? at 1320 K (Fig. 8),
remaining always larger than 7. The onset of surface disor-
dering at 800 K is accompanied by a noticeable change in the
slope of y(T) but the curve is much smoother than 7(7). Note
that y and 7 do not have the same value at the melting point.
The liquid-vacuum interface stress at T,, is 7=0.925 J/m?,
which can be identified with the free energy 9 of this inter-
face. This value lies between 7y and 7 for the solid surface.

The solid-liquid interface stress obtained from the solid-
liquid coexistence simulations is 7*/=—0.131 J/m?. To give
an idea of the error bar, the individual components of the
stress  are  7,=-0.129%0.035 J/m> and  7h=
-0.132+0.033 J/m?. The negative value of the stress indi-
cates that this interface is in a state of compression. This
interface stress would produce a biaxial expansion in a free-
standing (110) Cu film immersed in its melt at the solid-
liquid equilibrium temperature.

Recall that the calculation of 7/ included corrections for
the residual stresses within the solid. When such corrections
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FIG. 7. Temperature dependence of the surface-stress anisotropy
T,—711. The vertical dashed line indicates the bulk melting point.
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FIG. 8. Temperature dependence of the excess free energy and

stress of the (110) surface. Three values of the free energy, 7/, of the

liquid-vacuum interface are shown for comparison. The vertical
dashed line indicates the bulk melting point.

were ignored, the interface stress variations during the MC
simulations became much larger, resulting in 7},
=-0.081=0.177 J/m? and 75,=-0.151%0.175 J/m> Al-
though the residual stresses were relatively small (on the
level of 10 MPa), we see clear indications that taking them
into account produces a stabilizing effect and yields more
accurate values of the interface stress. The same was found
in the surface-stress calculations for the sold and liquid films.

Finally, for the interpretation of the results in Sec. V, we
computed the surface stress in the solid film as a function of
imposed biaxial strain at O K. The strain was increased by
small increments from O to 0.0252, a range which corre-
sponds to linear thermal-expansion factors at temperatures
between 0 and 1320 K. The atomic positions were relaxed
after each increment of strain. The surface stress was found
to decrease as a linear function of strain from 1.26 J/m? at
zero strain to 0.941 J/m? at the maximum strain.

V. DISCUSSION AND CONCLUSIONS

We have shown how surface and interface stresses and
free energies in elemental systems can be computed as ap-
propriate excesses when the solid phase is in a nonhydro-
static state. Instead of constructing profiles of intensive prop-
erties and choosing dividing surfaces,! we applied the
method of Cahn* to express the excess quantities through
determinants containing only extensive properties such as the
number of atoms, volume, and the total virial stress. All such
quantities are immediately accessible by atomistic simula-
tions employing either MC or molecular-dynamics methods.
Our approach is general enough to permit extensions to mul-
ticomponent systems, solid-solid interfaces, and other com-
plex systems in the future. We applied this method to exam-
ine the temperature dependence of the surface free energy
and surface stress of (110) copper modeled by an embedded-
atom potential. Although thermal expansion was applied to
minimize the bulk stress, some residual stress remained and
was taken into account in the calculations.

The (110) Cu surface stress was found to decrease with
temperature, reaching about 66% of its 0 K value near the
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FIG. 9. Temperature and bulk-strain dependencies of the surface
stress obtained by MC simulations and by 0 K static calculations. In
the latter case, the data are plotted against the temperature at which
thermal expansion would give the corresponding strain. The close
agreement below 800 K indicates the dominant role of the bond-

stretching effect in the temperature dependence of surface stress of
atomically ordered surfaces.

bulk melting point. The plot of 7 versus temperature (Fig. 5)
exhibits two distinct parts, which will be discussed sepa-
rately.

At temperatures from O to about 800 K, 7 decreases with
temperature almost linearly. The surface structure remains
perfectly ordered (Fig. 3) and the concomitant decrease in
the surface structure factor |S(k)|top is due to increasing am-
plitudes of atomic vibrations. The decrease in 7 could be
caused by two physical factors: (i) the vibration factor (the
amplitudes at the surface and in the bulk both increase with
temperature but at different rates, leading to a change in the
excess entropy of the surface) and (ii) the expansion factor
(the thermal expansion stretches interatomic bonds, altering
the state of tension on the surface). To evaluate the role of
the second factor, the 7 computed as a function of biaxial
strain at O K is plotted against the temperatures at which the
respective strains would be produced by thermal expansion
(Fig. 9). The curve is compared with the actual surface stress
as a function of temperature. In effect, the two curves repre-
sent the surfaces stresses for the same state of lateral strain in
the bulk!® but at different temperatures. The curves are in
very close agreement up to 800 K but diverge at higher tem-
peratures. This agreement indicates that as long as the sur-
face structure is perfectly ordered, the decrease in 7 with
temperature is strongly dominated by the bond-stretching ef-
fect produced by thermal expansion. This conclusion empha-
sizes the importance of including thermal-expansion factors
in surface-stress calculations at finite temperatures.

At T>800 K, the surface stress decreases with tempera-
ture more rapidly than below 800 K due to rapid accumula-
tion of surface disorder. It is due to this structural disordering
that the plots of 7 and |S(k)|,, versus temperature have a
distinct breaking point at about 800 K.

The surface free energy decreases with temperature (Fig.
8) and is less sensitive to the onset of surface disordering at
800 K. If the strain was kept constant, the slope of y versus
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FIG. 10. Temperature dependence of the excess entropy of the
(110) Cu surface. The vertical dashed line indicates the bulk melt-
ing point.

T would give us the negative of the excess surface entropy.
In our simulations, however, the strain was varied with tem-
perature to accommodate the thermal expansion. As a result,
our slope includes not only S but also the work done
against the surface stress, which is expressed by the addi-
tional term in Egs. (5) and (11). An omission of this term
would be thermodynamically incorrect and, for the particular
surface studied here, would underestimate its free energy by
about 0.1 J/m? near the melting point. The excess surface
entropy S can be readily determined from Eq. (8) using the
obtained values of yA and U®*. This quantity per unit physi-
cal area is plotted as a function of temperature in Fig. 10,
showing a slow initial growth followed by a rapid accelera-
tion above the surface disordering temperature.

Although the solid surface is covered with a relatively
thick (e.g., about 7 A at 1320 K) liquidlike film at tempera-
tures approaching 7,,, the free energy of the premelted sur-
face remains quite different from the free energy of the
liquid-vacuum interface or from the surface stress. This dif-
ference can be attributed to the excess quantities associated
with the interface between the premelted layer and the bulk
solid. As a simple model, the premelted surface can be con-
sidered as a layer of real liquid bounded by the solid-liquid
and liquid-vacuum interfaces. Neglecting interactions (“dis-
joining potential”) between these interfaces, the following
relations should hold near 7,

y=7'+9, (22)

=71+ . (23)

In these relations, y=1.130 J/m?, %=0.925+0.018 J/m?,
and 7=0.83+0.012 J/m? have been determined by the MC
simulations. Solving these equations for " and 7%, we ob-
tain ¥'=0.199+0.018 J/m? and 7/=-0.088 =0.018 J/m?>.
The solid-liquid interface free energy compares well with the
experimental value y'=0.177 J/m? from indirect measure-
ments for an average orientation.?’ Likewise, the solid-liquid
interface stress deduced from Eq. (23) is in adequate agree-
ment with 7/=—0.131%0.034 J/m? obtained by the MC
simulations.
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This consistency indicates that our interpretation of the
premelted surface structure as two interfaces is reasonable.
We emphasize, however, that this conclusion was reached for
the highly energetic (110) surface orientation, which pre-
melts more readily than low-energy orientations such as
(I11). In a separate study, we were able to overheat the (111)
Cu surface well above 7, without the formation of a liquid
layer or even significant disordering. The effect of the sur-
face orientation on premelting behavior will be the subject of
a separate publication. It is interesting to note that in our
simulations of the (110) solid-liquid coexistence, we clearly
observed spontaneous formation and destruction of small
facets with the (111) orientation. Since this faceting increases
the actual interface area, we conclude that the (111) orienta-
tion has a lower interface free energy than (110).

Finally, the negative sign of 7/ suggests that the (110)
solid-liquid interface is in a state of compression, a finding
which can have implications for crystal nucleation models.
Because this stress is an order of magnitude smaller than
typical surface stresses, it is very difficult to measure or com-
pute. Negative values of solid-liquid interface stresses were
previously reported for Lennard-Jones'>?! and hard-sphere??
systems. It is interesting to note that the hard-sphere simula-
tions gave a larger absolute value of 7 for the (111) orien-
tation than for (100).?> In a more recent simulation,'? nega-
tive 7' values were obtained for a binary Lennard-Jones
system but positive for Ni and Si modeled by embedded-
atom and Stillinger-Weber potentials, respectively. Further
research into anisotropy of interface stresses is needed to
determine whether the negative sign of 7/ is a feature of this
particular orientation or a general property of copper mod-
eled with this potential.
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APPENDIX

In this appendix we present derivations of Eqgs. (4) and
(14). Consider a rectangular simulation block containing an
interface normal to one of its edges z. The block contains a
fixed number of atoms N, all of which are of the same chemi-
cal species, and is subject to periodic boundary conditions in
the x and y directions parallel to the interface. The x-y cross
section of the solid part of the block contains a fixed number
of unit cells. We assume that the solid is in a nonhydrostatic
state of stress. It is either exposed to vacuum or in contact
and equilibrium with a liquid phase at a pressure p. The
temperature 7 is assumed to be homogeneous throughout.

This system can only receive/release heat and do me-
chanical work by deformation. In such processes, the differ-
ential of the total Helmholtz free energy is

PHYSICAL REVIEW B 79, 045430 (2009)

dF =-SdT+ 22 0, Vde,; + o33AdL,
Lj=1,

(A1)

where L is the system size in z and o;; are the volume-
averaged stress components on the lateral faces of the block.
The following mechanical equilibrium conditions are as-
sumed to be satisfied everywhere inside the solid: (1) o33=
—p for the solid-liquid interface and o33=0 for the solid sur-
face, and (2) 04;=0, i=1,2. According to Gibbs’ definition
of y as a work term,! this quantity can be expressed as the
free-energy cost of creating a unit area of new surface/
interface in a closed system at a constant 7 without doing
any other work.

For a solid surface, yA can be found as the free energy
excess over a bulk solid at a constant number of atoms,

yA=F - N = [FIN], (A2)

where f* is the free energy per atom of the homogeneous
solid phase. Taking a differential of Eq. (A2) at constant N
and combining it with dF from Eq. (A1),

d(yA)=-SdT-Ndf + 2, o,Vde;;.

i,j=1,2

(A3)
Applying the same procedure to Eq. (A2) with yA=0, we
obtain the Gibbs-Duhem equation for the bulk solid,

0=-SdT-N'df + 2 o},V'de,.
ij=12 !

(A4)
The system of two equations, Egs. (A3) and (A4), can be
solved for d(yA) using Cramer’s rule,*

d(yA) = - [S/X1dT - [NIX]df + X [o;VIX]de
ij=12

ijs
(A5)

which is identical to Eq. (4) of the main text. Depending on
the choice of X, one of the terms in Eq. (A5) vanishes and
the corresponding variable becomes a function of the re-
maining independent variables.

For the solid-liquid interface, since the interface creation
can be accompanied by a volume effect, the corresponding
mechanical work (if p # 0) must be eliminated by identifying
YA with the excess of F at constant N and V,

YA =[FINV] = (A6)

The free energies of the bulk phases are given by
Fl=—pV'+Npu, (A7)
F=-pV'+Nu, (A8)

where u is the chemical potential in the liquid. (Note that
these equations include only the liquid chemical potential;
see Gibbs’ discussion of the nonuniqueness of chemical po-
tential of nonhydrostatic solids.!) Equation (A8) expresses
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the solid-liquid equilibrium condition derived by Gibbs.!
Substituting Egs. (A7) and (A8) in Eq. (A6), it is straightfor-
ward to obtain

vyA=F— uN+pV. (A9)

Taking a differential of Eq. (A9) at constant N and using Eq.
(A1) in conjunction with dV=VZ, ;_, ,;de;;+AdL, we arrive
at

d(yA) == SdT + Vdp - Ndu+ 2, (0y;+ 8,;p)Vde;;.
ij=12

(A10)

This equation should be considered simultaneously with the

Gibbs-Duhem equations for the bulk phases, which are easily

obtained from Eq. (A10) by setting yA=0,
0=-8dT+V'dp-Ndu+ 2 (d;+8;p)V'de

i ij>

ij=12
(A11)
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0=—S'dT + Vidp — N'du. (A12)

Using these bulk equations, any two terms in Eq. (A10) can
be eliminated by applying Cramer’s rule,*

d(yA) = = [S/XY1dT + [VIXY]dp - [N/IXY]dp

+ X [(oy+ 8,;p)VIXY]de
ij=12

ijs (A13)
where the notation [Z/XY] is explained by Eq. (15).

The above equations include the extensive quantities S, V,
N, and o;V related to the entire simulation block. However,
their excesses do not change if, instead of the entire block,
we use a narrower layer containing the surface/interface. As
long as the bounds of the layer are beyond the influence of
the surface/interface, the addition of new bulk regions results
only in adding multiples of the second and/or third rows of
the determinants to the first one, which does not change the
value of the determinant.* Designating the layer properties
by square brackets, Egs. (A5) and (A13) become completely
equivalent to Egs. (4) and (14) appearing in the main text.
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